MICROLOCAL ESTIMATES OF THE STATIONARY SCHRÖDINGER EQUATION IN SEMI-CLASSICAL LIMIT by

نویسندگان

  • Xue Ping Wang
  • X. P. WANG
چکیده

— We give a new proof for microlocal resolvent estimates for semi-classical Schrödinger operators, extending the known results to potentials with local singularity and to those depending on a parameter. These results are applied to the study of the stationary Schödinger equation with the approach of semi-classical measures. Under some weak regularity assumptions, we prove that the stationary Schrödinger equation tends to the Liouville equation in the semi-classical limit and that the associated semi-classical measure is unique with support contained in an outgoing region. Résumé (Estimations microlocales de l’équation de Schrödinger stationnaire en limite semiclassique) Nous présentons une nouvelle démonstration pour les estimations microlocales de l’opérateur de Schrödinger semi-classique, qui permet de généraliser les résultats connus aux potentiels avec singularité locale et aux potentiels dépendant d’un paramètre. Nous appliquons ces résultats à l’étude de l’équation de Schödinger stationnaire par l’approche de mesure semi-classique. Sous des hypothèses faibles sur la régularité du potentiel, nous montrons que l’équation de Schrödinger stationnaire converge vers l’équation de Liouville en limite semi-classique et que la mesure semi-classique est unique et de support inclus dans une région sortante.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Smoothing Effect for the Schrödinger Equation with Long-Range Perturbation

We study microlocal analytic singularity of solutions to Schrödinger equation with analytic coefficients. Using microlocal weight estimate developped for estimating the phase space tunneling, we prove microlocal smoothing estimates that generalize results by L. Robbiano and C. Zuily. We suppose the Schrödinger operator is a long-range type perturbation of the Laplacian, and we employ positive c...

متن کامل

On the Semi-classical Limit for the Nonlinear Schrödinger Equation

We review some results concerning the semi-classical limit for the nonlinear Schrödinger equation, with or without an external potential. We consider initial data which are either of the WKB type, or very concentrated as the semi-classical parameter goes to zero. We sketch the techniques used according to various frameworks, and point out some open problems.

متن کامل

Semiclassical Limit of the Nonlinear Schrödinger-Poisson Equation with Subcritical Initial Data

We study the semi-classical limit of the nonlinear Schrödinger-Poisson (NLSP) equation for initial data of the WKB type. The semi-classical limit in this case is realized in terms of a density-velocity pair governed by the Euler-Poisson equations. Recently we have shown in [ELT, Indiana Univ. Math. J., 50 (2001), 109–157], that the isotropic Euler-Poisson equations admit a critical threshold ph...

متن کامل

Hydrogen Abstraction Reaction of Hydroxyl Radical with 1,1-Dibromoethane and 1,2-Dibromoethane Studied by Using Semi-Classical Transition State Theory

The hydrogen abstraction reaction by OH radical from CH2BrCH2Br (R1) and CH₃CHBr2 (R2) is investigated theoretically by semi-classical transition state theory. The stationary points for both reactions are located by using ωB97X-D and KMLYP density functional methods along with cc-pVTZ basis. Single-point energy calculations are performed at the QCISD(T) and CCSD(T) levels of theory with differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007